top of page

DISCnet Cohort 2024

Our students are exceptional problem solvers and highly-skilled data specialists.

From their PhD research they bring extensive experience of handling intensive tasks and managing complex data sets and problems to industry placements.

Meet The Students

YoshitaDabburi.jpeg

Yoshita Dabburi

Queen Mary University London

Measuring Electron Neutrino Interactions with Short Baseline Near Detector (SBND)

shutterstock_278525459_edited.jpg

Alex Arnold

Queen Mary University London

.

AlexGavin_edited.jpg
Queen Mary University London

The search for Higgs boson decay to charm quarks

shutterstock_278525459_edited.jpg

Sayan Das

University of Sussex 

Search for dark neutrinos with the Short Baseline Near Detector

DavidKrejcik.jpg
Open University

Using Deep Learning to improve Euclid data analysis

LorenzoDemaria.jpeg
Open University

Untangling gas, dust, and ice astrochemistry with JWST
ice-mapping

LewisMaver.jpg
Open University

Enhancing Biophysical Models of Stroke with Artificial Intelligence

EoghanRutherford.jpg

Eoghan Rutherford

Open University

Machine learning applied to space telescope data to find transiting exoplanets and new exoplanet host stars, as part of the Dispersed Matter Planet Project

shutterstock_278525459_edited.jpg

Viktoria Kecskemethy

University of Hertfordshire

Remote sensing alien clouds and chemistry with JWST

shutterstock_278525459_edited.jpg

Bhuvanesh Srini

University of Hertfordshire

Atmospheric rivers in the midst of Climate change (data science approach)

EvaSabaterAndres.jpeg
University of Sussex

Detector systematics and neutrino oscillation analysis at DUNE

shutterstock_278525459_edited.jpg

Max de Carlos Generowicz

University of Sussex

Opaque scintillator detector R&D and neutrino physics

shutterstock_278525459_edited.jpg

Adam Wong

University of Sussex

Opaque scintillator detector R&D and neutrino physics

shutterstock_278525459_edited.jpg

Xin Tang

University of Sussex

.

DISCnet logo all-white.png

© 2025 by DISCnet 

DISCnet is the Data Intensive Science Centre in SEPnet, and an STFC Centre for Doctoral Training;  

a collaboration between the University of Sussex, Queen Mary University of London, and The Open University

Follow Us On:

  • LinkedIn
  • Twitter
bottom of page